The Fractional Fourier Transform and Harmonic Oscillation
نویسندگان
چکیده
The ath-order fractional Fourier transform is a generalization of the ordinary Fourier transform such that the zeroth-order fractional Fourier transform operation is equal to the identity operation and the first-order fractional Fourier transform is equal to the ordinary Fourier transform. This paper discusses the relationship of the fractional Fourier transform to harmonic oscillation; both correspond to rotation in phase space. Various important properties of the transform are discussed along with examples of common transforms. Some of the applications of the transform are briefly reviewed.
منابع مشابه
The discrete harmonic oscillator, Harper’s equation, and the discrete fractional Fourier transform
Certain solutions to Harper’s equation are discrete analogues of (and approximations to) the Hermite–Gaussian functions. They are the energy eigenfunctions of a discrete algebraic analogue of the harmonic oscillator, and they lead to a definition of a discrete fractional Fourier transform (FT). The discrete fractional FT is essentially the time-evolution operator of the discrete harmonic oscill...
متن کاملFractional Fourier Transform Based OFDMA for Doubly Dispersive Channels
The performance of Orthogonal Frequency Division Multiple Access (OFDMA) system degrades significantly in doubly dispersive channels. This is due to the fact that exponential sub-carriers do not match the singular functions of this type of channels. To solve this problem, we develop a system whose sub-carriers are chirp functions. This is equivalent to exploiting Fractional Fourier Transform (F...
متن کاملSpatial prediction filtering in the fractional Fourier domain
The fractional Fourier transform is a new concept in the theory of time-frequency representations. Closely linked to the Wigner distribution through the Radon transform, it introduces frequency-time hybrid domains in which the signal and the noise could be interwoven differently than in either the time or the frequency domain. The fractional transform breaks down a signal into elementary chirp ...
متن کاملSimulation of an Airy Beam with Optical Vortex under Fractional Fourier Transforms
First, this study obtained the fields of an Airy beam (AiB) with optical vortex (OV) for a Fourier transform (FT) system and a fractional Fourier transform (fractional FT) system; thereafter, their intensity and phase patterns were simulated numerically. The splitting on each line of the phase pattern indicates the position of an OV. The results show that the OV position will change when the po...
متن کاملThermo-Viscoelastic Interaction Subjected to Fractional Fourier law with Three-Phase-Lag Effects
In this paper, a new mathematical model of a Kelvin-Voigt type thermo-visco-elastic, infinite thermally conducting medium has been considered in the context of a new consideration of heat conduction having a non-local fractional order due to the presence of periodically varying heat sources. Three-phase-lag thermoelastic model, Green Naghdi models II and III (i.e., the models which predicts the...
متن کامل